

WP4 INTERLINK Platform
D4.3- First release of

INTERLINK platform and
community portal

The INTERLINK project is co-funded by the European Union.
Horizon 2020 - DT-GOVERNANCE-05-2020 - Grant Agreement No 959201

Ref. Ares(2022)3595160 - 11/05/2022

INTERLINK Deliverable 4.3 Page 2 of 39

Project acronym INTERLINK

Project full title Innovating goverNment and ciTizen co-dEliveRy for
the digitaL sINgle marKet

Call identifier DT-GOVERNANCE-05-2020

Type of action RIA

Start date 01/01/2021

End date 31/12/2023

Grant agreement no 959201

WP 4. INTERLINK Platform

Author(s) Serge Sushkov (TREE), Diego Bernabe (TREE), Cristina
Luengo (TREE)

Diego López de Ipiña (DEUSTO), Julen Badiola (DEUSTO)

Editor(s) Serge Sushkov (TREE)

Reviewers Raman Kazamiakin (FBK), Olli Pelkonen (CNS)

Leading Partner TREE

Version V1.0

Deliverable Type OTHER

Dissemination Level PU

Date of Delivery 2022-04-30 (M16)

Submission Date 2022-05-11 (M17)

INTERLINK Deliverable 4.3 Page 3 of 39

VERSION HISTORY

Version Issue Date Status Changes Contributor

0.1 12/04/2022 Draft Initial structure TREE

0.2 02/05/2022 Draft 1st version TREE, DEUSTO

0.3 09/05/2022 Pre-final
Version with reviewers’
inputs

FBK, CNS

1.0 11/05/2022 Final Submitted version TREE

INTERLINK Deliverable 4.3 Page 4 of 39

Glossary

ENTRY DEFINITION

INTERLINKERs Common building blocks, provided as software tools or in the
form of knowledge offered digitally, that represent
interoperable, re-usable, EU-compliant, standardized
functionality for the co-production of public services

Public Service Services that are publicly available and are provided by the
government or on behalf of the government’s residence in the
interest of its citizens. In INTERLINK we focus not only on the
software services (i.e., the services delivered digitally) but
also the services that rely on digital technologies.

Software Platform A platform is a group of technologies that are used as a base
upon which other applications, processes or technologies are
developed.

In other words, a platform is the basic hardware (computer)
and software (operating system) on which software
applications can be run. This environment constitutes the
basic foundation upon which any application or software is
supported and/or developed.

Within the context of the INTERLINK project, we define a
Software Platform as a set of data storage, backend services
and APIs which serve as a basis for the business logic and
frontend applications to develop, integrate and function. It
also includes SW deployment and operational infrastructure.

Software Backend Is part of software services and/or applications running on
server side within the client-server paradigm. It mostly
dedicates to data storage, business logic, process workflow
and utility functions

Software Frontend Is part of the software services and/or applications running
on the client side within the client-server paradigm. It mostly
focuses on graphical user interface (GUI), workflow
navigations and supporting business logic

SW API API means Application Programming Interface, a type of
software interface, offering a service to other pieces of software.

INTERLINK Deliverable 4.3 Page 5 of 39

ACRONYMS

ABBREVIATED EXTENDED

AAC Authentication and Authorization

CD Continuous Deployment

CEF Connecting Europe Facility

CI Continuous Integration

DB Database

DM Data Model

IT Integration test

KPI Key Performance Indicator

OSS Open-Source Software

PA Public Administration

SaaS Software as a Service

SOC Service Offering Canvas

SSO Single Sign-On

SW Software

UT Unit test

WP Work Package

INTERLINK Deliverable 4.3 Page 6 of 39

Table of contents

1 INTRODUCTION .. 9

1.1 Introduction ... 9

1.2 Related documents and contents ... 9

2 INTERLINK PLATFORM AND INFRASTRUCTURE .. 10
2.1.1. Software Repository .. 10
2.1.2. Software Development and Deployment Procedures .. 11

2.2 Infrastructure Platform Components ... 15
2.1.1. Data Storage Layer .. 15
2.1.2. User Authentication .. 15
2.1.3. Infrastructure Logging .. 15
2.1.4. User Activity Logging .. 18

2.3 Task and Incident Management .. 22

2.4 The Servers Deployed ..23

3 COMMUNITY WEB PORTAL .. 23

3.2 INTERLINKERs as Enablers of the Co-production Process ... 24

3.3 Catalogue of INTERLINKERs .. 27

3.4 INTERLINK Collaborative Environment ..28
3.3.1. INTERLINK Collaborative Environment Views ...32

4 PREPARATION FOR THE PILOT CASES FOR EVALUATION .. 35

4.2 Guidelines for instantiation ... 35
4.1.1. INTERLINKERS selection per Environment .. 37

4.3 Specific Instantiations .. 37
4.1.1. Latvian Use-Case .. 37
4.1.2. Spanish Use-Case ... 38
4.1.3. Italian Use-Case .. 39

List of figures
Figure 1. Project software repository structure.
Figure 2. Infrastructure and User logging architecture.
Figure 3. Log messages collected into central LOKI database.
Figure 4. Infrastructure monitoring dashboard.
Figure 5. User activity monitoring dashboard.
Figure 6. Redmine issues list per Work Package and sub-project.
Figure 7. INTERLINK API to be integratable in collaborative environment.
Figure 8. INTERLINKERs Catalogue data in GitHub repository.
Figure 9. INTERLINKER catalogue.
Figure 10. Generic co-production model in INTERLINK.
Figure 11. Comparison of INTERLINK ENGAGE stage in 2 different co-production projects and INTERLINKER

recommendation.

INTERLINK Deliverable 4.3 Page 7 of 39

Figure 12. Comparison of INTERLINK BUILD (standard) vs. equivalent RUN (custom) stages in 2 different co-
production projects.

Figure 13. Guide section of the collaborative environment frontend.
Figure 14. Workplan section of the collaborative environment frontend .
Figure 15. Overview view of the Collaborative Environment.
Figure 16. Interlinkers catalogue in the collaborative environment frontend.
Figure 17. Interlinkers catalogue in the collaborative environment frontend.
Figure 18. Environment variables file for demo environment (.env.demo).
Figure 19. Reduced metadata.json file for Business Model Canvas knowledge INTERLINKER.
Figure 20. Reduced environment file for Latvian use case
Figure 21. Result of the customization variables applied to the Spanish use case
Figure 22. Reduced environment file for Spanish use case
Figure 23. Result of the customization variables applied to the Spanish use case
Figure 24. Reduced environment file for Italian use case
Figure 25. Result of the customization variables applied to the Italian use case

List of tables
Table 1. Example of log format for tracking of C.R.U.D. operations on Asset entity.
Table 2. Example of log format for tracking inside of INTERLINKER modules.
Table 3. Co-production INTERLIKER API.

INTERLINK Deliverable 4.3 Page 8 of 39

Executive summary

This deliverable represents the first release of INTERLINK platform, including the
community web portal, catalogue of digital enablers for the collaborative process
(INTERLINKER modules), as well as the software development environment and
deployment procedures, including guidelines for instantiation of the three use-case pilot
demo servers and specific instantiation instructions.

First, the software repository structure, software development and software
deployment procedures are described in Section 2.1.

Then the major infrastructural platform components, namely, the User Authentication
service and Infrastructure and User Activity Logging are described in Section 2.2.

Sections 2.1 and 2.2 are placed under the common Chapter 2 reflecting the Task T4.3
within the Work Package (WP) 4 of the INTERLINK Project.

Description of the implemented INTERLINK Community Web Portal is reported in
separate Chapter 3 as it corresponds to Task T4.4 of the WP4 of the Project.

Chapter 4 of this document describes the software installation and preparations for the
demonstrations and testing of the three pilot use cases of the Project. These activities
correspond to the tasks under Work Package 5 and their results will be reported in a
separate deliverable document.

INTERLINK Deliverable 4.3 Page 9 of 39

1 Introduction

1.1 Introduction

INTERLINK is designed as a collaborative software system, which consists of numerous
software components.

This document describes the first stage of this integration, in which all single
components are integrated into a collaborative system. The architectural basis has been
explained in the previous deliverable D4.2, where we described the principles and
concepts of the overall system architecture in detail. Hence, this document will show
how they apply to provide the expected result in the INTERLINK platform.

1.2 Related documents and contents

During the project, many conceptual and architectural deliverables have been created,
which build the basis for the INTERLINK platform. The following enumeration lists the
most relevant of them. Each of them describes aspects, which apply to a single
component or idea in much greater detail. We will refer to those documents where
necessary, notably:

● D3.1 (FBK, R, M10) - Identification and specifications of INTERLINKERs.
Specifications of common building blocks for INTERLINK inclusive public services
and their specification.

● D4.2 (TREE, OTHER, M12) - Reference architecture model and specification. The
reference architecture model and specifications as defined in T4.1.

● D5.1 (DEUSTO, R, M12) - Use-case plans and guidelines v1. Result of T5.2, this
document contains the specification of the use-case plan, including purpose and
background, objectives and evaluation criteria, strategy, prerequisites,
assumptions, risks, personnel and responsibilities, organisation, site description,
methodology, schedule and test result collection. It also describes the associated
trial evaluation plan and KPIs. Two releases are planned, one for each phase.

● D5.2 (VARAM, R, M12) - Community building and preliminary use-cases activities.
Result of T5.3, this document contains the plan for building a community for the
users and stakeholders in all the use-case sites, including details about the
communication channels and contents.

● D2.1 (RU, R, M16) - Preliminary governance model. This report will include a literature
review and a preliminary governance model identifying relevant variables and
conditions. The model will also take into account the comparative analysis of
successful and unsuccessful cases of co-production.

● D2.3 (RU, R, M16) - Governance performance indicators. This document will be a list
of operationalized, non-technical performance indicators, to be used in T5.2 to
develop KPI for the evaluation of the platform.

INTERLINK Deliverable 4.3 Page 10 of 39

● D2.4 (CNS, R, M16) – Co-business model specification and analysis. This report will
briefly describe the alternative co-business models considered for INTERLINK,
present analysis results identifying the strengths and weaknesses of each
candidate model and specify the best co-business model to be supported by the
INTERLINK platform.

● D3.2 (FBK, OTHER, M16) - Initial repository of INTERLINKERs and partnership tools.
This deliverable will provide an initial repository of common core INTERLINK
enablers (INTERLINKERs) to foster Government as Platform model, and of public-
private partnership governing tools such as partnership models, templates, and
guidelines. The initial repository will cover a subset of the enablers targeted at the
first use-case validation.

2 INTERLINK Platform and Infrastructure

First, the software repository for the INTERLINK Project had been established on
GitHub.com server. This satisfies the requirement for the project software to be free of
commercial licensing and open source.

The project’s GitHub repository has been structured according to the structure and types
of the software in the project. Next, the software development and software deployment
policies had been elaborated. Finally, the software hosting environment had been
defined and first deployments started.

2.1.1. Software Repository

The following structure has been established for the project software repositories in
GitHub and is reflected in the naming convention for the software repositories:

● Interlink-project: the main configuration and documentation for the entire project
software release;

● Frontend: the frontend part of the collaboration web portal;
● Backend-X: various backend components, both for the web portal and platform

type services;
● INTERLINKER-X: software services corresponding to the INTERLINKER building

blocks.

The Figure 1 below presents the GitHub repository of the project, which could be also
seen online at https://github.com/orgs/interlink-project/repositories.

https://github.com/orgs/interlink-project/repositories

INTERLINK Deliverable 4.3 Page 11 of 39

Figure 1. Project software repository structure.

2.1.2. Software Development and Deployment Procedures

The following software development and software release management have been
established for the project software.

Continuous Integration (CI)

Unit Tests (UT)

Every software package should have Unit Tests (UT) provided by software package
authors. Project DevOps should configure an automatic workflow to execute those UT
on every push to the master branch.

Software Releases

Once a software component achieves an important implementation milestone by
developers, its code should be TAGged. For software version which are intended for

INTERLINK Deliverable 4.3 Page 12 of 39

deployment, a software release should be built per each software repository. Either
assigning a TAG or having built a software release should trigger automatic building of
a new docker image(s) for this software repository. Docker images should contain TAG
or software versions somewhere in the name of the docker image.

All INTERLINK software packages should be grouped into a single INTERLINK
software release, with a way to configure which versions (TAGs) of particular software
packages should be included in a given version (TAG) of the INTERLINK software
release. For example, INTERLINK software release version 2.1-zgz consists of the
following software versions per software package:

● Frontend v1.8
● Backend v3.2
● Zgz module v2.6
● etc.

Integration Tests (IT)

Once the entire INTERLINK software release is tagged, this should trigger execution
of Integration Tests (IT) to check compatibility between cross-dependent software
packages within the software release.

Building of Docker Software images

Once both UT and IT are completed in "green", i.e., on successful (OK, without errors)
termination of UT + IT pipelines, a new pipeline building docker images should launch.

Having no UT/IT available, the pipelines to build docker images should be triggered by
assignment of TAGs to software repository or by having built a software release.

Continuous Deployment (CD) & Environments

There might be the following SIX environments:

● Local
● DEV
● Staging (= DEMO)
● pilot MEF
● pilot ZGZ
● pilot VARAM

Local Environment

It is a local computer of a software package developer. He/she can deploy any versions
(branches, tags) of software there in order to develop his/her software package. This
environment has no docker images autocompiled at GitHub repository, no CI/CD
pipelines, etc. and it goes completely under the responsibility of the particular
developer himself/herself.

INTERLINK Deliverable 4.3 Page 13 of 39

Development Environment (DEV)

This environment is used for manual tests of all the software functionalities,
integrations, etc for developers of all the Project software packages. For this, docker
images should be re-built per every new push to master branches by CI pipelines once
all UT/IT passed. Once docker image(s) built successfully, CD pipelines are started to
deploy those new docker images into DEV server.

Staging Environment (DEMO)

This environment is used for non-developer members of the project for
demonstrations and GUI testing and feedback purposes. For this, docker images are
built by CI pipeline out of latest TAGs assigned per every software package, having all
packages passed UT/IT successfully. The DEMO server is intended for testing and
training sessions with business users, and their work should not be suddenly
interrupted by a new docker image deployment. That's why, once the docker images
with new staging software versions are built, DevOps admin should announce to
testing users and somehow coordinate with them day and time of deployment of the
new software to the staging (DEMO) server.

Pilot Servers (ZGZ, MEF, VARAM)

Deployment of INTERLINK software to pilot servers should contain the common
INTERLINK base software (backend, frontend and other platform type components
like DBs, auth, etc) and pilot-specific components (ZGZ software components for ZGZ
pilot, etc.). The deployment process should be similar to deploying on staging (demo)
server.

Software Updates

Minor updates (patches)

Minor software updates are needed when there is either a bug fix or small functionality
improvement which (almost) does not affect (or affects very little) other software
components, API interfaces, Data Model, etc. Usually, the reason for such software
update appears during software testing and corresponding issue is created in
Redmine for corresponding software component. Fixing the software code should
start a.s.a.p. New software release with minor version incremented (for ex. 3.2.1)
should be created. Deployment should be done on the first possible occasion (e.g.,
overnight or a weekend).

Such software change may happen within the same software release, for example,
during the first pilot demo sessions.

Major Software Updates (new Software Release)

Such code update corresponds to implementing a new significant functionality. New
software release should be built and deployed with a new major version (e.g., 3.2 or
3.2.0). Usually, the new software release should keep back-compatibility, the same

INTERLINK Deliverable 4.3 Page 14 of 39

software design, interfaces, system architecture and data models should be
preserved, but could be extended.

Such software change should happen per different project milestones, for example,
there will be initial and final pilot demonstrations with different software releases.

Software Refactoring

This is a very rare case when system architecture, API interfaces and/or data model
are changed significantly or recreated anew. For API this would imply new
documentation and testing, for DB this would imply data migration from old DBs into
the new ones, with corresponding DB data export and import scripts, etc.

Such software changes usually should not happen within the lifetime of the same
project. It may happen when a new project is started as a continuation of another one.

Docker-compose profiling

Docker-compose profiling is a useful mechanism to structure and group lower and
upper level software services within docker-compose YAML file. It is described in
detail here: https://docs.docker.com/compose/profiles/

The idea is to try to have separate docker-compose files per each software service
and to include (or exclude) them into the deployment of a particular environment.

Data persistency

For the first pilot demos the configuration data is read out from JSON files stored in
GitHub software repository. The user activity data (new co-production processes,
task state changes and asset instances) are kept as long as the DB docker container
is not re-installed. On DB container re-deployment these data may be lost.

Current situation

If DB is part of the software release (e.g. web portal) and requires re-deployment on
re-installation of the web portal, then to allow bugfix software updates during the pilot
demo sessions but at the same time to keep the user activity data, corresponding data
export and import should be realized by use of additional data export/import scripts.

Separation of Platform Software Services

Another approach would be to have low level platform services like DB separated from
web portal and other components, so re-deployment of web portal (either backend
and/or frontend) should not re-deploy the DB container. In this way, the same DB
continues to run keeping the accumulated data.

Data backups

Backing up data is a good practice independently on the DB container configuration
and re-deployment policies. Having data backed up periodically will save from the
global crashes at the level of the hosting server, as well as from incidental data loss

https://docs.docker.com/compose/profiles/

INTERLINK Deliverable 4.3 Page 15 of 39

during e.g. maintenance or other activities. Backed up data should be kept on a
physically different server, ideally, on a different hosting data centre location.

2.2 Infrastructure Platform Components

The platform components are those backend software services which carry out very
basic and common services for the other project software, for example, databases,
user authentication, logging and so on. All those services and their features are
described in details in D4.2. As mentioned there, the orchestration of the software
components is based on the Docker containers per each software service component,
hosted in the cloud virtual servers.

This document reports on what has been deployed in the v1 of the three pilot
demonstration cases.

2.1.1. Data Storage Layer

The data storage layer is implemented by deploying MongoDB, PostgreSQL and Redis
databases as separate Docker containers, but combined in the common docker-
compose. yaml configuration file. These database containers may have a common
network disk mounted for purposes of data archiving (if needed).

Configuration data currently is persistified in the GitHub repository in the form of
JSON files and is read out into databases at the web portal start-up phase.

Currently standalone web services use their own instances of databases in separate
Docker containers. If needed, they may use separate databases within common
merged Docker containers (one per MongoDb cluster, another for PostgreSQL,
another for Redis, etc.)

2.1.2. User Authentication

The Authentication and Authorization Control (AAC) software service is adapted for
use in the INTERLINK Project: user authentication within the co-production web
portal is integrated with AAC. It has been implemented according to the specification
presented in detail in D4.2 and has been deployed as a standalone software service.

2.1.3. Infrastructure Logging

The main goal of the Infrastructure Logging System is to monitor health and
operations of all the software components and to alert INTERLINK software
administrators on possible problems with the running software Services (e.g., disk
full, severe errors in software logs, etc.).

INTERLINK Deliverable 4.3 Page 16 of 39

Infrastructure logging stack software collects, stores, processes and visualises data
about general functioning of all the other software components at infrastructure level,
i.e., Docker containers and software services (like HTTP servers, DB engines, etc)
within the containers.

Both infrastructure and business level (user activity) logging and monitoring have
similar data flow consisting of:

● Collection of logs data: either from application level or from docker
containers;

● Centralised storage of logs data: log messages from all the applications and
docker containers are stored in the central logging storage DB;

● Processing of stored logs data: either a basic common processing (indexing,
profilins, grouping, etc.) or a customised KPI-specific processing of logs data
is performed;

● Data report visualisations: a configurable web dashboard which presents
various types of processed data.

Because the infrastructure and user activity logging have many functionalities in
common, single common architecture has been elaborated for them, as depicted in
Figure X below.

The green part on the left of Figure 2 is the Infrastructure Logging Software Stack.
The blue in the centre is the Collaborative Web Portal. And the custom User Activity
Logging software components are in red colour.

As an initial version of User Activity Logging, the user activity data captured at the
Web Portal Frontend may be streamed into the Infrastructure Logging Software Stack
(for example, HTTPd server can write such messages to a separate log file, listened by
Promotail log published, etc.) and visualised in its back-office web dashboard without
any custom-made processing of users’ activity data. Such implementation is included
for the first pilot demonstrations.

For the final version of User Activity Logging, own custom data processing, data
storage/retrieval and own visualisation dashboard should be implemented and
integrated into the Web Portal Frontend.

INTERLINK Deliverable 4.3 Page 17 of 39

Figure 2. Infrastructure and User logging architecture.

For the infrastructure logging and monitoring, the Grafana+Prometheus stack
(http://Grafana.com) has been configured and deployed.

To collect log messages from Docker containers, Promotail daemon is configured to
run within each container, reading log messages from corresponding log files and
sending them to the central logging DB server which is implemented by LOKI software
(https://grafana.com/oss/loki).

Figure X below illustrates log messages collected into the common logging database
LOKI server.

Figure 3. Log messages collected into central LOKI database.

INTERLINK Deliverable 4.3 Page 18 of 39

Figure X below shows the web dashboard visualizing the infrastructure log monitoring
as implemented for the first pilot demonstrations. This dashboard allows to keep
under control the set of the software modules deployed and being ran.

Figure 4. Infrastructure monitoring dashboard.

2.1.4. User Activity Logging

Behavioural logs arise from the activities recorded when users interact with a computer
system. In general, user behaviours of interest can include:

● low-level actions such as the keystrokes used when interacting with a
productivity application;

● the content viewed in web browsers or e-readers;

● the search queries and result clicks captured by web search engines;

● browsing patterns and purchases on e-commerce sites;

● content generated and shared via social media;

● the history of edits to wikis or other web documents, etc.

Some of the above data is primary (web clicks, search query strings, etc.), but others are
KPIs calculated by a data processing engine over the primary and post-processed data
(for example, browsing patterns, purchase associations, etc.).

In the case of INTERLINK public service co-production web portal, the primary data
which we can log should track user participation in the co-production processes, in
particular , user navigation and actions within the web portal areas:

INTERLINK Deliverable 4.3 Page 19 of 39

● Public service co-production process flow, with Data Model entities

● Co-production process
● Phase of co-production process
● Phase Objective
● Task within the Phase Objective
● INTERLINKER which operates within current Task on an Asset
● an Asset

● User and Team management, with DM entities

● User,
● Team within co-production process
● User Role within a Team

● Catalogue of INTERLINKERs, with DM entities

● INTERLINKER description entry in the Catalogue

● Catalogue of Public Services

● Public Service.

During the PS co-production process, users will navigate within the collaborative
environment web portal, as well as use some platform-type or even external software
Service INTERLINKERs. Thus, logging of user activity will be implemented inside the
code of the two different software:

● the web portal frontend;

● and the platform-type software INTERLINKERs (those integrated within the web
portal).

Technically, user activity logs are generated in the following 2 ways:

● at the backend code of the main web portal functionality API, capturing
corresponding CRUD (Create, Read, Update, Delete) functions on the core Data
Model entities;

● By making HTTP call to the new logging API which has been developed explicitly
for the logging purposes: it allows to make HTTP calls from the web portal
frontend pages as well as from inside the INTERLINKER software module web
pages.

Table 1 below shows example data fields which may be logged at the level of operations
on an Asset:

Table 1. Example of log format for tracking of C.R.U.D. operations on Asset entity.

INTERLINK Deliverable 4.3 Page 20 of 39

Log message field Field comments
User_ID ID of user within the SSO auth system
DateTime Data and time of the logging event
LogTag UserAct_ASSET
CoProdProcess_ID ID of Co-Production Process
CoProdPhase_ID ID of Co-Production Phase
CoProdPhaseObjective_ID ID of Phase Objective
CoProdObjTask_ID ID of Objective Task
Cat_INTERLINKER_ID ID of a record on given INTERLINKER in the Catalogue

Run_INTERLINKER_ID
UNIX-like Process_ID (e.g., autoincremental BigInt) of
user session for that INTERLINKER (between start
and finish of visualising it in the web portal frontend)

CoProdAsset_ID ID of Asset being created, read, updated or deleted
CoProdAsset_Type Type of an Asset (text, spreadsheet, calendar, etc.)

Asset_Action

Type of action: C.R.U.D. and additional types if
needed within the context (e.g., CLONE as creating an
Asset as a copy of another Asset, to distinguish from
creating a new Asset from scratch)

Specific_Payload Placeholder to use for context-specific JSON data
(e.g., ID of another Asset being copied)

For the user activity logging inside those integrated INTERLINKER software modules (i.e.
for detailed tracking of what user does inside that INTERLINKER), additional generic user
logging API will be created. This API will consist of only POST method because sending
logs is a one-direction process (no need to read, update or delete logs themselves here).

Within various INTERLINKER software modules (those which are of platform-type, i.e.,
integrated into the web portal), there may be generic fields which are common to all
INTERLINKERs (like User_ID, INTERLINKER_ID, Action, etc) and fields specific to
functionality of particular INTERLINKER (e.g. Discussion_thread_id, etc).

The table below presents an example of data to log from inside INTERLINKERs.

Table 2. Example of log format for tracking inside of INTERLINKER modules.

User_ID ID of the user generating logged action
DateTime Date and time of the log message
LogTag UserAct_INTERLINKER_Internal

INTERLINK Deliverable 4.3 Page 21 of 39

Cat_INTERLINKER_ID
ID from catalogue of INTERLINKERs (static for given
INTERLINKER)

Run_INTERLINKER_ID
UNIX-like Process_ID (e.g. autoincremental BigInt) of
user session for that INTERLINKER (between start and
finish of visualising it in the web portal frontend)

Internal_Action
Type of action from a fixed list of possible actions (e.g.
{Navigating (reading) web page, launching / stopping
INTERLINKER, creating / using an asset file, etc. })

Asset_ID ID of an Asset if being created or used
Asset_type Type of an Asset if being created or used
JSON_PAYLOAD JSON payload with INTERLINKER-specific details data

Once the logging data is collected and stored in the central logging DB, it basic
processing is carried out automatically, for example:

● indexing of log messages by tags, DateTime, ID of users, Co-Production Process,
type of INTERLINKER module, type of asset, etc.;

● profiling of data per major field like date, user_ID, CoProdProcess_ID, type of
INTERLINKER, type of asset, etc.

● aggregation of data per field, for example, total, min, max and average of users,
actions, Co-Production Process, tasks, INTERLINKER modules, assets per day,
user_ID, Co-Production Process, task, INTERLINKER, asset, etc.

Having all this basic processing done, the monitoring administrator configures the web
dashboard to visualise the basic logging data, aggregated values and time series. Figure
5 below presents visualisation of some of the user activity logging data.

Figure 5. User activity monitoring dashboard.

INTERLINK Deliverable 4.3 Page 22 of 39

2.3 Task and Incident Management

For the task and incident tracking within the project, a single and common Redmine
server has been deployed and configured. The server is configured reflecting the
structure of the INTERLINK Project by Work Packages, in particular:

● WP3 for development of INTERLINKER modules;

● WP4 for the web portal and the platform;

● WP5 for the demonstration sessions, etc.

The following three types of activities can be tracked with the Redmine server:

● Incidents: when some misbehaviour is discovered in the operation of the web
portal and any of the involved software;

● tasks: particular work actions planned or proposed;

● feature: a new functionality or an improvement being proposed, which may be
converted into a planned task later.

Figure 6 below illustrates one of the views in the Redmine portal, listing the existing
issues per Work Package and sub-projects.

Figure 6. Redmine issues list per Work Package and sub-project.

INTERLINK Deliverable 4.3 Page 23 of 39

2.4 The Servers Deployed

The mid-term project demonstrations for the three pilot use cases are described in
detail in Chapter 4 below. The following five servers have been hosted and deployed
with the INTERLINK software according to the types of the operational environment:

● DEV server: for internal usability and integration tests;

● STAGING (DEMO): for a stable version the web portal for business-level tests and
training processes (http://demo.interlink-project.eu).

● Pilot / ZGZ: Zaragoza pilot demonstration server (http://zgz.interlink-
project.eu).

● Pilot / MEF: Italian pilot demonstration server (http://mef.interlink-project.eu).

● Pilot / VARAM: Latvian pilot demonstration server (http://varam.interlink-
project.eu).

3 Community Web Portal

The INTERLINK collaborative environment has been designed to support the co-
production methodology of INTERLINK and facilitate its adoption and application in the
co-production of novel public services. The portal front-end allows to foster INTERLINK
collaborative environment, combining standard exploration and interaction with the
information and tools delivered in WP2 and WP3 and according to the requirements
elicited in T4.1. The INTELINK Collaborative Environment offers for a given co-
production process alternative views, namely Overview, Workplan and Guide views.
Through such views, it provides user access partnership and collaboration tools,
guidelines and templates and most importantly to the core building blocks through the
INTERLINKERs developed in T3.2.

It offers the following core functionalities:

a) co-producer team and project management

b) guide for co-production process, a “how to” guide to take these partnerships
towards a successful deployment of new co-delivered public services.

c) recommendation of INTERLINKERs most suitable to the problem profiles
represented by the chosen co-production task

d) selection, instantiation and registry of use (displaying result of using the enabler,
e.g., instantiation of a Business Plan) of a given INTERLINKER. The instantiation of
an INTERLINKER, no matter if it is a software or knowledge one, usually gives place
to a new resource which contributes to the completion of a co-production process
task.

e) INTERLINKER catalogue where imported INTERLINKERs and co-produced ones
are published.

http://demo.interlink-project.eu/
http://zgz.interlink-project.eu/
http://zgz.interlink-project.eu/
http://mef.interlink-project.eu/
http://varam.interlink-project.eu/
http://varam.interlink-project.eu/

INTERLINK Deliverable 4.3 Page 24 of 39

3.2 INTERLINKERs as Enablers of the Co-production Process

INTERLINKERs, as already specified in D3.2, are common building blocks, provided as
software tools or in the form of knowledge offered digitally, that offer interoperable, re-
usable, EU-compliant, standardised functionality for public service co-production
management. These enablers are designed to support the co-production of effective,
participatory, and sustainable public services. They can be applied to the following
purposes:

● To guide co-production: Co-production enablers that guide and support teams in
the collaborative execution of the co-production initiatives.

● To build capacity: Partnership tools and knowledge resources, which tackle the
legal, social, and business aspects to make co-delivered public services viable
and feasible in time.

● To aid service development: Technical enablers for co-delivered services,
aligned with other existing EU-wide initiatives to foster interoperable and
sustainable public services.

Some examples of software INTERLINKERs for co-production are: a) Tools for ideas
crowdsourcing and collaborative decision making; b) Tools for surveys; c) Tools for team
management; d) Document sharing & File management tool. On the other hand, some
exemplary knowledge INTERLINKERs for co-production are: a) Guidelines and canvas to
perform stakeholders analysis; b) Templates for stakeholders’ engagement plan; c)
Templates for surveys for problem refinement; d) Guidelines and materials for
workshops for service design or e) Templates for Business Plans. Some exemplary
knowledge INTERLINKERs to build capacity are: a) Guidelines on GDPR for Data
Protection; b) Information sheets and consent forms; c) Guidelines on the acquisition
and reuse of software for public administrations. Some exemplary software
INTERLINKERs supporting service building are: a) Registration and authentication
component; b) Collaborative Editor for public service descriptions; c) Loyalty, incentives,
and rewards component.

In order to support the continuous growth of a catalogue of INTERLINKERs to empower
the co-production process, a Specification Model for INTERLINKERs has been defined.

The INTERLINKER specification model aims at classifying INTERLINKERs across
different dimensions to guide and support the co-production process activities, comply
with standards, and foster reuse. Each INTERLINKER must supply a set of metadata in
the form of several categories. Regarding usage: a) problems it addresses; or b) Service
offering type in EU CEF SOC model. Regarding licensing: Software and Data licences.
Regarding context: a) Administrative: local, national, EU; b) Regulatory: standards,
regulations it complies to; c) Organisational: PA, Business, Individuals as beneficiaries
and d) Domain: application domains, cross-cutting concerns. Regarding software: a)

INTERLINK Deliverable 4.3 Page 25 of 39

Provisioning: SaaS, OSS; b) Interoperability; c) Security: protocols and d) Integration
within the platform.

Following a design pattern similar as the one defined in Research Object Crates (RO-
CRATE)1, INTERLINK has defined an extensible declarative model, based on JSON
Schemas, to easily define new either knowledge or software INTERLINKERs. The way to
add new INTERLINKERs is to create a new directory per INTERLINKER that contains:

● A "metadata.json" file in the root of the directory.

● Optionally, a "snapshots" directory to store the images corresponding to the
INTERLINKER.

Knowledge INTERLINKERs usually contain several representations of the template, e.g.
document (docx), spreadsheet (xlsx), presentation (pptx) and so on, from which it will be
instantiated so that users may view what capability they offer before instantiating them.
Besides, they often include an instructions.md file which explains its usage.

Software INTERLINKERs usually contain a logo.png file to be able to depict them in the
collaborative environment. Besides and very importantly, apart from common metadata
to all enablers (e.g., problem profiles targeted, difficulty, licence, name, description, etc.)
they also include aspects to enable its integration with the collaborative environment,
whenever they are of co-production type, e.g., through the “capabilities” dictionary which
includes elements such “instantiate”, “clone”, “view”, “edit”, “delete”, “download” or
“open_in_modal” Boolean fields among others. Fig. 7 illustrates the corresponding API
methods to be provided by every software INTERLINKER to be neatly integrated with the
collaborative environment. On the other hand, Fig. 8 shows the GitHub repository where
all INTERLINKERs that populate the Collaborative Environment, and more concretely its
Catalogue, are published, following the mentioned Specification Model.

1 «Research Object Crate (RO-Crate)», Research Object Crate (RO-Crate).
https://www.researchobject.org/ro-crate/.

https://www.researchobject.org/ro-crate/

INTERLINK Deliverable 4.3 Page 26 of 39

Figure 7. INTERLINK API to be integratable in collaborative environment.

INTERLINK Deliverable 4.3 Page 27 of 39

Figure 8. INTERLINKERs Catalogue data in GitHub repository.

3.3 Catalogue of INTERLINKERs

The INTERLINKER catalogue provides a one-stop-shop for know-how enabling co-
production. It has been populated with knowledge and software INTERLINKERs
leveraging resources generated in previous EU projects, social innovation initiatives,
and service design best practices like: WeLive, Silearning.eu, servicedesigntools.org,
DesignersItalia, IDEO or Engage2020. Some resources have been adapted to the
specific needs of co-production; others are being created from scratch based on
project research results. Fig. 9 shows the INTERLINK catalogue where items can be
filtered according to strings associated to their metadata, to their nature (software or
knowledge), who created them and their ranking.

INTERLINK Deliverable 4.3 Page 28 of 39

Figure 9. INTERLINKER catalogue.

3.4 INTERLINK Collaborative Environment

The INTERLINK collaborative environment has been designed to support the co-
production methodology of INTERLINK (see Fig. 10) and facilitate its adoption and
application in the co-production of novel public services. As previously mentioned, it
offers the following core functionalities: a) co-producer team and project management;
b) guide for co-production process; c) recommendation of INTERLINKERs most suitable
to the problem profiles represented by the chosen co-production task; d) selection,
instantiation, and registry of use (displaying result of using the enabler, e.g. instantiation
of a Business Plan) and e) INTERLINKER catalogue already showcased in Fig. 9.

INTERLINK Deliverable 4.3 Page 29 of 39

Figure 10. Generic co-production model in INTERLINK.

Notice that apart from methods required to integrate a co-production INTERLINKER
with the collaborative environment, see Table 3, custom endpoints are defined by each
INTERLINKER, e.g. for GoogleDrive the endpoint shown as /api/v1/assets/empty (see
Fig. 8).

Table 3. Co-production INTERLIKER API .

URI Method Description

/ GET redirects to swagger / redoc DOCS

/assets POST [OPTIONAL] Posts data for asset creation
and return JSON of asset

/assets/instantiate GET GUI for asset creation

/assets/{ASSET_ID} GET JSON data of asset

/assets/{ASSET_ID} DELETE Deletes asset and returns No content

/assets/{ASSET_ID}/download GET Download a representation of asset

/assets/{ASSET_ID}/view GET GUI for the interaction with the asset

/assets/{ASSET_ID}/clone POST [OPTIONAL] Clones the asset and returns
JSON data

An assortment of co-production INTERLINKERs has been created to provide useful
functionality to the collaborative environment, e.g.: a) interlinker-googledrive to deal

INTERLINK Deliverable 4.3 Page 30 of 39

with office like documents; b) interlinker-survey to design and host answers for surveys;
c) interlinker-ceditor to collaboratively edit documents or d) description augmenter to
annotate web pages.

As already mentioned, JSON Schemas have been defined to declaratively define
Software and Knowledge INTERLINKERs. Likewise, co-production models can be
defined which are tuned to the specifics of a co-production process, e.g. a Hackathon
organisation and celebration. Indeed, although the collaborative environment is pre-
loaded by default with the generic INTERLINK co-production tree, applicable in any co-
production process, see Fig. 10, purpose specific co-production trees can be defined as
shown in Fig. 11 and Fig. 12. Notice that Fig. 13 shows the INTERLINKERs
recommendation capability of the collaborative environment, where the same task in
two different co-production trees has been selected, recommending the same
INTERLINKERs plus additional specific ones for the second co-production tree. Fig. 14.
shows how the generic build sub-phase is replaced in the custom hackathon’s co-
production tree by a run sub-phase, with very different composing objectives and tasks.

INTERLINK Deliverable 4.3 Page 31 of 39

Figure 11. Comparison of INTERLINK ENGAGE stage in 2 different co-production projects and INTERLINKER
recommendation.

INTERLINK Deliverable 4.3 Page 32 of 39

Figure 12. Comparison of INTERLINK BUILD (standard) vs. equivalent RUN (custom) stages in 2 different co-
production projects.

3.3.1. INTERLINK Collaborative Environment Views

The Collaborative Environment offers different views to focus the co-production
process in different aspects: a) guide; b) workplan an c) overview.

Figure 13. Guide section of the collaborative environment frontend.

INTERLINK Deliverable 4.3 Page 33 of 39

The guide view showed in the Figure 13 shows how a co-production team can be guided
in the co-production process, by being able to navigate through the co-production
process phases, and for each phase, select a co-production objective, realise the tasks
associated to that objective and get recommended relevant INTERLINKERs which may
support accomplishing the objective of the currently selected task. Observe in the figure
the selection of the task “Understand different types of stakeholders” with the
corresponding INTERLINKERs being recommended, e.g. “Stakeholder types guidelines”,
“Stakeholder Mapping Canvas” and so on.

Figure 14 shows the Workplan view which allows stakeholders to establish and review
durations of the tasks accomplished within a co-production process. Figure 15 shows
how the progress made in a co-production process can be reviewed easily by accessing
the “Overview” view. Notice that navigation between a generated resource as result of
having selected and used an INTERLINKER within a task is possible by means of the “See
task” button. Also notice that navigation between the “Workplan” and “Guide” views is
possible by clicking on the corresponding task name in the Workplan view (see Figure 14)
or clicking on “Time planification” link within a given task view in “Guide” view (see Figure
13).

Figure 14. Workplan section of the collaborative environment frontend.

INTERLINK Deliverable 4.3 Page 34 of 39

Figure 15. Overview view of the Collaborative Environment.

Figure 16. Interlinkers catalogue in the collaborative environment frontend.

These features will be provided through a web and mobile accessible responsive portal
for all stakeholders involved in the INTERLINK community (PA, citizens, and private
actors).

INTERLINK Deliverable 4.3 Page 35 of 39

4 Preparation for the Pilot Cases for Evaluation

INTERLINK is going to be tested in 3 cross-European pilots. Firstly, in the Ministry of
Economy and Finance - Italy (MEF) – a mock-up of a Participatory Strategic Planning
Module (called PSPM) will be produced which allows Public Bodies and their staff to
actively participate in the definition of the Strategic Plans, as well as to have access to a
repository of good practices on strategic planning approaches and methodologies.

Secondly, at VARAM, the Ministry of Environmental Protection and Regional
Development of the Republic of Latvia and its Latvian State Portal (https://latvija.lv/EN),
which is a portal that provides easy access to services delivered by state and local
government institutions. The goal is to continuously update and enhance such portal
descriptions so that the public services published are increasingly adopted.

Thirdly, at Zaragoza city (ZGZ) and its Centre for Art and Technology (eTOPIA), where the
aim is promoting collaborative city-making facilities and programs and improving the
process of Open Innovation.

This task will provide the different INTERLINK instances, i.e. one per use-case site.
Starting from the common ground of the pre-operational platform built in T4.3, this task
will then be in charge of setting up and deploying a specific individual instance for each
use-case. While the basis for all the instances is common, INTERLINK acknowledges the
need for specific customisation when taken to the deployment and real use in the
specific context of each use-case site.

This includes:

1. selection, integration and parameterization of INTERLINK enablers required for
one particular instance;

2. fine tuning, according to the particularities of each local scenario, including
(when/if necessary) small ad-hoc adaptations or bridges that could be needed,
like e.g. the creation of parsers/gateway to integrate the local in-use data
sources, systems, or legacy applications.

These stages and activities will be done in parallel for each use-case site (i.e. 3 subtasks
for: Latvia, Spain and Italy).

As a result, an operational instance will be launched for each use-case, ready for
evaluating INTERLINK on the 3 sites.

4.2 Guidelines for instantiation

Each environment uses a file containing certain environment variables that modify the
behaviour and appearance of the platform components (.env.[environment-name] files).

In addition, volumes of data are used to mount certain digital resources, such as images,
in the containers responsible for providing the platform's services. In this way, the

INTERLINK Deliverable 4.3 Page 36 of 39

frontend is able to modify the images it displays depending on the environment where it
is located.

Figure 17. Interlinkers catalogue in the collaborative environment frontend.

Some logos and images can be modified in this way, as well as setting the default
language and the allowed languages.
DOMAIN=dev.interlink-project.eu

MODE=production

PROTOCOL=https://

pilot customization

FRONTEND_CUSTOMIZATION_IMAGES_PATH=./pilots-frontend-customization/default

PRIMARY_COLOR=

DEFAULT_LANGUAGE=en

ALLOWED_LANGUAGES=en,es,lv,it

Figure 18. Environment variables file for demo environment (.env.demo).

INTERLINK Deliverable 4.3 Page 37 of 39

4.1.1. INTERLINKERS selection per Environment

As mentioned in the 3.1 section, each INTERLINKER is defined by a metadata.json file.
This file contains the “environments” key, which defines in which environments must be
launched.
{

 "name_translations": {

 "en": "Business Model Canvas"

 },

 "description_translations": {

 "en": "This canvas can be used collaboratively, for instance, during a

brainstorming or a focus group, to reflect on the the most suitable business model

associated to a co-produced service."

 },

 "environments": [

 "varam",

 "mef",

 "zgz"

],

 "languages": [

 "en"

],

 "problemprofiles": [

 "SUS_PROBLEM_1"

],

 (...)

}

Figure 19. Reduced metadata.json file for Business Model Canvas knowledge INTERLINKER.

4.3 Specific Instantiations

4.1.1. Latvian Use-Case

The variables set for the Latvian use case set Latvian as the default language, allow
the use of English, and point to the directory containing the logos and images to
customise the frontend.

DOMAIN=varam.interlink-project.eu

(...)

pilot customization

FRONTEND_CUSTOMIZATION_IMAGES_PATH=./pilots-frontend-customization/varam

PRIMARY_COLOR=

DEFAULT_LANGUAGE=lv

INTERLINK Deliverable 4.3 Page 38 of 39

ALLOWED_LANGUAGES=en,lv

Figure 20. Reduced environment file for Latvian use case

Figure 21. Result of the customization variables applied to the Spanish use case

4.1.2. Spanish Use-Case

The variables set for the Spanish use case set Spanish as the default language, allow
the use of English, and point to the directory containing the logos and images to
customise the frontend.

DOMAIN=zgz.interlink-project.eu

(...)

pilot customization

FRONTEND_CUSTOMIZATION_IMAGES_PATH=./pilots-frontend-customization/zgz

PRIMARY_COLOR=

DEFAULT_LANGUAGE=es

ALLOWED_LANGUAGES=en,es

Figure 22. Reduced environment file for Spanish use case

Figure 23. Result of the customization variables applied to the Spanish use case

INTERLINK Deliverable 4.3 Page 39 of 39

4.1.3. Italian Use-Case

The variables set for the Italian use case set Italian as the default language, allow the
use of English, and point to the directory containing the logos and images to
customise the frontend.

DOMAIN=mef.interlink-project.eu

(...)

pilot customization

FRONTEND_CUSTOMIZATION_IMAGES_PATH=./pilots-frontend-customization/mef

PRIMARY_COLOR=

DEFAULT_LANGUAGE=it

ALLOWED_LANGUAGES=en,it

Figure 24. Reduced environment file for Italian use case

Figure 25. Result of the customization variables applied to the Italian use case

